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Abstract—In traditional methods for noise robust automatic
speech recognition, the acoustic models are typically trained using
clean speech or using multi-condition data that is processed by
the same feature enhancement algorithm expected to be used
in decoding. In this paper, we propose a noise adaptive training
(NAT) algorithm that can be applied to all training data that
normalizes the environmental distortion as part of the model
training. In contrast to feature enhancement methods, NAT esti-
mates the underlying “pseudo-clean” model parameters directly
without relying on point estimates of the clean speech features as
an intermediate step. The pseudo-clean model parameters learned
with NAT are later used with vector Taylor series (VTS) model
adaptation for decoding noisy utterances at test time. Experiments
performed on the Aurora 2 and Aurora 3 tasks demonstrate
that the proposed NAT method obtain relative improvements of
18.83% and 32.02%, respectively, over VTS model adaptation.

Index Terms—Model adaptation, noise adaptive training, robust
speech recognition, vector Taylor series (VTS).

I. INTRODUCTION

D ESPITE years of research, automatic speech recognition
(ASR) in noisy environments remains a challenging

problem since there are many possible types of environmental
distortion, and it is difficult to compensate for all of these
distortions accurately. The primary reason for poor recognition
performance in noise is the mismatch between training and test
conditions. Many methods have been proposed in the literature
to reduce this mismatch and improve performance. These
methods can be grouped under two main categories: feature
enhancement methods and model adaptation methods.

Feature enhancement techniques operate by denoising the
feature vectors received at test time so that they better match
the recognizer’s acoustic models, typically trained from clean
speech. These methods are attractive because they are typically
simpler computationally than model domain techniques and
can be implemented independently from the recognizer. Some
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techniques operate at the spectrum level, e.g., spectral subtrac-
tion [1], while others, such as Cepstral-MMSE [2] operate on
the features directly. There is also a class of techniques that
use a prior speech model, typically in the form of a Gaussian
mixture model (GMM) to aid the enhancement process. For
example, SPLICE uses stereo recordings of clean and noisy
speech to learn a piecewise linear mapping from noisy to clean
speech using a Gaussian mixture model (GMM) [3]. While
front-end methods have shown improved performance on
several tasks, they all, by definition, make point-estimates of
the clean speech features. Errors in these estimates can cause
further mismatch between the features and the acoustic model,
resulting in degraded performance.

Model adaptation techniques avoid this problem by compen-
sating the probability distributions of the recognizer directly.
Several model adaptation techniques have been proposed in the
literature. Some, such as MLLR [4] and MAP adaptation [5], are
data driven methods that do not make any assumptions about
the nature of the corrupting process. In situations where there
is limited adaptation data, reduced-parameter methods such as
CMLLR [6], [7] and Regularized FMLLR [8] have been pro-
posed.

While these methods can improve recognition accuracy
in noisy conditions [9], [10], better performance is gener-
ally obtained by methods that exploit the known relationship
between clean and noisy speech, such as parallel model combi-
nation (PMC) [11] and vector Taylor series (VTS) adaptation
[12]–[15]. These methods are generally more complex than
generic adaptation techniques but require very little adaptation
data. In fact, most only need a reliable estimate of the noise
and channel distributions. In [15], VTS adaptation produced
state of the art performance on the Aurora 2 task for maximum
likelihood systems that do not use discriminative training.

In spite of such success, methods like this have two signifi-
cant drawbacks: 1) they require acoustic models trained from
clean data, which means performance will be suboptimal for
tasks for which such data does not exist, and 2) the adaptation
algorithms make approximations that may cause residual mis-
match between the adapted models and the observed data, e.g.,
in VTS, a truncated Taylor series expansion is used to approx-
imate the relationship between clean and noisy speech in the
cepstral domain and the inverse DCT used to convert the fea-
tures to the log mel filterbank domain is a pseudo-inverse.

In this paper, we propose a new training algorithm called
noise adaptive training (NAT) to overcome these two problems
in the context of the VTS adaptation algorithm in [15]. It is moti-
vated by the success of the feature-based noise adaptive training
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algorithm in [3], the speaker adaptive training (SAT) algorithm
in [16], and the more recently proposed adaptive training algo-
rithms for noisy speech recognition in [17] and [18].

The proposed NAT algorithm uses multi-condition data
and transforms a multi-condition trained model into a
“pseudo-clean” model to reduce the environment specific
variations. NAT integrates this environmental distortion nor-
malization into HMM training using a new formulation of the
expectation–maximization (EM) algorithm that incorporates
the identical VTS approximation used by the model adapta-
tion. The pseudo-clean model parameters learned by NAT are
later used in conjunction with VTS adaptation for decoding
noisy utterances at runtime. As an analogy, the proposed NAT
algorithm has the same relationship to VTS model adaptation
as SAT has to MLLR adaptation. This relationship will be
discussed in more detail in Section IV.

The NAT algorithm is closely related to two other recently
published adaptive training algorithms. Like NAT, these
methods also seek to learn a model from multi-style training
data that is better matched to a model adaptation scheme
designed for environmental robustness. The first technique
is based on the idea of “irrelevant variability normalization”
(IVN) [17] and uses the VTS model adaptation in [13] as
the basis for its approach. The second technique, called Joint
adaptive training (JAT), was proposed in [18] as a companion
training scheme to a recently proposed model adaptation
scheme called Joint Uncertainty Decoding (JUD) [19]. JUD
performs adaptation to a noisy environment using a set of
regression classes, in a manner similar to multi-class MLLR,
rather than adapting each Gaussian individually, as is typically
done in VTS or PMC.

Some salient aspects of the proposed NAT method are listed
as follows.

• In contrast to the feature-based adaptive training algorithm
in [3], NAT jointly estimates the underlying pseudo-clean
model parameters and the environmental distortion param-
eters without relying on a point estimate of the clean speech
features.

• The NAT algorithm uses multi-condition data for acoustic
model training whereas the standard model adaptation
techniques such as PMC and VTS require clean trained
models.

• In NAT, the same VTS scheme used for adaptation in the
recognition stage is applied in HMM training, which fur-
ther reduces the mismatch between training and testing.

• NAT estimates static, delta, and delta-delta model param-
eters during training while IVN estimates only the static
parameters. Also, IVN is based on the VTS approach in
[13], while NAT is based on the approach in [15]. As a re-
sult, two schemes use slightly different auxiliary functions.

• JAT performs adaptation using regression classes whereas
NAT adapts each Gaussian individually. In JAT, the means
and variances are updated jointly using an iterative gra-
dient-based approach in the M-step. In NAT, an iterative
approach is only required for estimating the variances. This
distinction is also true for the distortion model parameters
(noise and channel).

The rest of the paper is organized as follows. In Section II,
we review HMM adaptation using a VTS approximation. The
proposed NAT algorithm for VTS model adaptation is detailed
in Section III. In Section IV, we compare and contrast the pro-
posed NAT algorithm to SAT, IVN, and JAT. We then describe
a series of experiments that illustrate the performance of NAT
in Section V and finally, offer some concluding remarks in
Section VI.

II. HMM ADAPTATION USING VTS

We assume an acoustic environment in which clean speech is
corrupted by stationary additive noise and linear filtering. In the
cepstral domain, the relationship between clean and distorted
speech can be expressed as [20]

(1)

where , , , are the cepstrum vectors corresponding to dis-
torted speech, clean speech, channel, and noise, respectively. In
(1), the nonlinear function is

(2)

where is the discrete cosine transform (DCT) matrix and
is its pseudo-inverse.

It can be shown that the Jacobian of (1) with respect to and
evaluated at a fixed point is

(3)

where represents the diagonal matrix whose elements
equal to the value of the vector in the argument. Similarly, the
Jacobian of (1) with respect to can be expressed as .
Then, the nonlinear relationship between the distorted speech,
clean speech and environment parameters (noise and channel) in
(1) can be approximated by using a first order VTS expansion
around the point as

(4)

where

(5)

The goal of the traditional VTS model adaptation, e.g.,
[13]–[15], is to adapt the parameters of the HMM trained using
clean data to the environment conditions of a test utterance.
Let denote the set of Gaussian parameters
for the clean speech HMMs where and denote the
mean vector and the diagonal covariance matrix of the th
Gaussian component in the th state, respectively. We assume
that additive noise is Gaussian with mean and covariance

, and that the channel has a probability density of the
Kronecker delta function .

It is assumed that the environment distortion does not change
the alignment between speech frame and the corresponding
Gaussian component of the HMM. As a result, only the mean
vector and covariance matrix for each Gaussian of the HMM
will be affected. Under the VTS approximation, is a linear
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function of , , and . Therefore, the mean vector of the
adapted model can be estimated by taking
the expected value of the terms in (4), as follows:

(6)

Similarly the adapted covariance matrix can be estimated with

(7)

In (6) and (7), and are functions of , the mean of
the th Gaussian in the th state of the clean-speech HMM, and
hence carry subscript of . It can be concluded from (7) that
even if and are diagonal, is no longer diagonal.
However, is assumed to be diagonal so that it can be used
with a traditional ASR decoder that has been optimized for di-
agonal covariance matrices.

To compute the means and variances of the delta features, we
use the continuous-time approximation proposed in [21]. This
results in the following mean adaptation formula

(8)

where we assume that the noise is stationary, hence ,
for all utterances. Similarly, the covariance matrices for the delta
features are adapted according to

(9)

The means and covariance matrices of the delta-delta features
are computed in a similar way to (8) and (9) by replacing delta

parameters with delta-delta parameters.
To adapt the clean-speech model parameters using (6)–(9),

we need environment distortion (noise and channel) parame-
ters. These parameters are hidden variables; hence, they are es-
timated for each test utterance using an iterative EM [22] algo-
rithm using the VTS approximation. After model adaptation, the
utterance is re-decoded with the new models. In this paper, we
use the VTS adaptation algorithm in [15] as the basis of our ap-
proach. This implementation adapts the means and variances of
the static, delta, and delta-delta parameters using a generalized
EM approach.

The traditional VTS model adaptation requires the original
HMM be trained from clean speech; otherwise the generative
model used for adaptation is not valid. This prevents the use of
multi-condition data for acoustic model training. This problem
is solved by the proposed NAT algorithm which is discussed in
the next section.

III. NOISE ADAPTIVE TRAINING

Let us assume that there are utterances in the multi-con-
dition training set , and is a sequence of

observations corresponding to th utterance. In traditional
ML HMM training, the parameters are estimated such that the
resulting generic model maximizes the likelihood of the
multi-condition training data.

In NAT, we assume that each utterance in the training set has
an associated distortion model that

describes the additive noise and the channel. The NAT algo-
rithm seeks to find the distortion model parameters for all ut-
terances , and the underlying “pseudo-clean”
model parameters that jointly maximize the likelihood of
the multi-condition data when the model is transformed to
the adapted HMM of . This can be written in the ML sense
as

(10)

where

(11)

is the adapted HMM using the VTS approach (6)–(9) as detailed
in Section II. In (10), and are the old and new
parameters set, respectively. The term “pseudo-clean” is used to
indicate that the model defined by is not necessarily equiv-
alent to models trained with clean speech, but rather the model
that maximizes the likelihood of the multi-condition training
data when processed by the same VTS adaptation scheme that
will be used at runtime. In NAT, we use a new EM algorithm
that learns the distortion model parameters and the pseudo-clean
speech model parameters iteratively. Thus, we start with the fol-
lowing EM auxiliary function:

(12)
where is utterance index, represents summation over

frames, states, and Gaussians, and is the posterior proba-
bility of the th Gaussian in the th state of the HMM for frame

of the th utterance

(13)

and computed as

(14)

where and are the conventional forward and backward
variables used in Baum–Welch training algorithm [23], is
the mixture weight of the th Gaussian in state . In (12) and
(14)

(15)

where are computed using VTS model adaptation as
in (6)–(7), and they are actually utterance-dependent since they
are functions of distortion parameters for that utterance .
Similarly, , , and terms in (6)–(9) are also com-
puted for each utterance since they are functions of distortion
parameters (ref. Equation (3), (5)), hence they carry the su-
perscript in the remainder of the paper.

To update the noise mean in the M-step of the EM algo-
rithm, we take the derivative of the function with respect to
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and set the result to zero. After following the derivation in
Appendix A, we can express the update formula for noise mean
as

(16)

where is the value of at the VTS expansion point

, , , and it is equal to

(17)

The channel mean is also found in a similar way by taking
the derivative of the function with respect to and setting
the result equal to zero. Then, the following update formula is
obtained for the channel mean:

(18)

It is assumed that the noise is stationary; hence, means corre-
sponding to the delta and delta-delta features are assumed to be
zero i.e., , for all utterances.

There is no closed-form solution for the noise covariance ma-
trices, so they are optimized iteratively using Newton’s method
according to the following update equation:

(19)

The derivation for the terms in (19) is shown in Appendix A. The
noise covariance matrices for dynamic features , are
computed in a similar way to (19) by replacing the static pa-
rameters and features with dynamic parameters and features. It
is assumed that noise covariance matrices are
all diagonal.

The pseudo-clean model parameters are updated in a sim-
ilar way to the distortion parameters except that they are com-
puted based on all utterances. We take the derivative of the

function with respect to for static features and set the
result to zero. After following the derivation in Appendix B,

the update formula for model mean is computed as

(20)

Equation (20) is only applied to update the mean parameters
corresponding to static features. For the delta portions of fea-
tures, the mean update formula is shown in (21) at the bottom
of the page. The update equation for the delta-delta mean values
is the same as (21) substituting parameters for the param-
eters.

As with the noise covariance, there is no closed-form solu-
tion for computing the covariance matrices of the HMM distri-
butions. In a similar way as we did for , Newton’s method is
used to estimate them iteratively as follows:

(22)

The derivation for the terms in (22) is shown in Appendix B. The
covariance matrices for dynamic features of the pseudo-clean
model are computed in a similar way to (22) by
replacing the static parameters and features with the dynamic
parameters and features.

The transition probabilities, the initial probabilities, and the
mixture weights for the pseudo-clean model are computed in the
same way as traditional ML training of the HMMs but using the
new posterior probability as defined in (13). The NAT algorithm
is summarized in the next section.

A. NAT Algorithm

A block diagram of the noise adaptive training algorithm is
shown in Fig. 1. Using multi-condition data, an HMM is trained
using the conventional Baum–Welch algorithm to initialize

. The distortion parameters for each utterance ( for
) are initialized such that the channel mean is set to

zero and the noise mean and covariance are estimated from the
first and last frames (non-speech frames) of the utterance. The
distortion parameters for each utterance are kept in a separate
file. After the model and distortion parameters are initialized,
NAT training is performed iteratively as shown in Fig. 1.

NAT first updates the environment distortion parameters
given the old model parameters . Then, the new distortion
parameters are used to accumulate the sufficient statistics for

(21)
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Fig. 1. Flowchart of the NAT training. � denotes pseudo-clean model and
initialized with HMM trained using multi-condition data. � and � denote
distortion parameters and VTS adapted model for the �th utterance, respectively.

the model parameter estimation. After all the utterances are pro-
cessed and the sufficient statistics are accumulated, the model
parameters are updated. This whole process is considered as a
single iteration. Multiple iterations of this whole process are per-
formed until the likelihood converges. Once the pseudo-clean
model parameters are learned, the distortion parameters are
discarded and the HMM parameters are ready to be used
with VTS adaptation at test time.

B. Implementation Details

The model variances are optimized iteratively using
Newton’s method as given in (22) since there is no closed
form solution. To ensure that the variance remains positive,
a common trick is used such that the variance is transformed
as . After estimating , the expo-
nential function is applied to obtain the actual covariance

. Hence, the derivatives in (22) are actually
computed with respect to as given in Appendix B.

There are some well-known numerical issues with Newtons
method. If the Hessian matrix is close to singular, its inverse
may be unstable. Also, to ensure that the updates converge to a
local maximum, the Hessian matrix must be negative definite.
A diagonal loading technique [24] is used to fulfill these con-
straints as

(23)

where was empirically found to be useful to stabilize the
optimization. Also, to ensure the stability, a similar approach to
[18] is used such that the change of variance was limited as

(24)

which in turn limits the change of the original variance
by a factor of . In the experiments, was set to 1. The
noise covariance matrix was also optimized iteratively in the
same way.

One drawback of our implementation is that the diagonal
loading parameter is not optimized, which can hinder the rate
of convergence. One possible solution is to choose the smallest

that will make the Hessian matrix negative definite and well
conditioned. This can be done via eigenvalue decomposition of
the Hessian by choosing to be slightly larger than the most pos-
itive eigenvalue. An alternative to this is to use a diagonal matrix
instead of in (23) in which only the elements corresponding
to positive eigenvalues of the Hessian matrix are replaced by a
small constant value.

IV. DISCUSSION

In this section, we compare NAT to several related algorithms,
beginning with SAT [16]. The problem formulation of NAT and
SAT are quite similar with the following main difference: the
SAT algorithm searches for a compact model that will maxi-
mize the expected likelihood of the data from multiple speakers
after performing MLLR transformation on , whereas the NAT
algorithm seeks the pseudo-clean model that will maximize
the expected likelihood of the multi-condition data after VTS
adaptation. The variances are not updated in the SAT; hence,
we only focus on the comparison of the mean update equations
here. The mean adaptation formula given in (6) can be written
in the form of MLLR transformation as follows:

(25)

where

(26)

and

(27)

when the VTS expansion point is and .
Then, the model mean update equations for the SAT and NAT
algorithms are in the same form of

(28)

with the following key exception: whereas SAT utilizes an un-
constrained transformation matrix per speaker, NAT uses a ma-
trix that is specific to each Gaussian that is highly con-
strained by the utterance-specific distortion parameters.
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We now compare NAT to the other two adaptive training tech-
niques described in Section I, IVN [17] and JAT [18]. Both IVN
and NAT have the same goal of creating a pseudo-clean model
from multi-condition training data that is suitable for VTS adap-
tation at runtime. The most significant difference between NAT
and IVN is that in IVN, only the HMM model parameters for
the static coefficients are optimized using VTS-based environ-
mental normalization during training. The update formulae for
the delta and delta-delta parameters are the same as conventional
maximum likelihood training, except that the posterior compu-
tation in the E-step is altered to account for the adaptation of the
static parameters.

There is a second, more subtle difference between IVN and
NAT that is rooted in the specific implementation of VTS used
by each algorithm. IVN is based on the VTS adaptation algo-
rithm proposed in [13], while NAT uses VTS adaptation as per-
formed in [14] and [15]. In [13] (and thus in IVN), the log prob-
ability of the complete data used in the EM auxiliary function
includes the observed noisy speech and hidden variables for
clean speech, channel, noise and model component index (cf.
Equation (12) in [13]). In contrast, in the VTS approach we fol-
lowed, these variables are first marginalized out of the complete
data distribution and thus the only remaining hidden variables
in the auxiliary function are the state and Gaussian component,
as shown in (12). Training with this objective function generates
parameters which maximize the likelihood of the noisy training
data against the adapted HMMs, regardless of whether or not
the model parameters learned represent the true distributions of
the hidden variables they represent, e.g., clean speech, noise,
and channel. We note, however, that by using the auxiliary func-
tion in [13], IVN does have the advantage of closed-form update
equations for both the means and variances, whereas an iterative
approach is required for the variances in NAT.

The JAT algorithm also shares the goal of IVN and NAT to
create of a more compact “canonical” model from noisy training
data that is appropriate for model adaptation during decoding.
As described in Section I, JAT is the companion training algo-
rithm to JUD [19]. JUD operates by explicitly modeling the
joint probability of clean and noisy speech in order to trans-
form clean speech models to the current noise conditions. Un-
less stereo data is available, this joint distribution is obtained
using an existing model adaptation scheme, e.g., VTS or DPMC.
What differentiates JUD from methods like VTS and PMC is
that JUD computes the transformations for a small set of regres-
sion classes rather than for each Gaussian individually. This re-
sults in a significant computational savings, typically at a small
decrease in performance. JAT is the training procedure that es-
timates the set of canonical HMM parameters for a given JUD
setup, i.e., a particular adaptation algorithm and set of regres-
sion classes. Thus, the key difference between JAT and NAT is
the same as the difference between JUD and VTS adaptation,
namely the presence or absence of regression classes.

In JAT [18], the mean and variance parameters are concate-
nated into a supervector, and updated jointly using a general-
ized EM approach. In this case, there is no closed-form solution
to update the model parameters; hence both the means and the
variances are updated iteratively using Newton’s method. As a
result, the Hessian matrix used in the second-order update has

terms that represent the second derivative of the auxiliary func-
tion with respect to the mean and variance components as well
as heterogeneous terms that involve the mean and variance com-
ponents. However, in NAT, the means and variances are updated
sequentially, i.e., the means are updated assuming the variances
are fixed and vice-versa. This enables a closed-form solution for
the mean because under the VTS approximation, the adapted
mean is a linear function of the mean of the “pseudo-clean”
Gaussian. Computing the mean in closed form in the M-step
is more efficient and potentially more accurate than using a gra-
dient-based approach. The variances in NAT are updated using
Newton’s method because a closed form solution is still not pos-
sible under the VTS model. Thus, the Hessian matrix used in
NAT is simpler than the one used in JAT since it only contains
terms related to the variance. This distinction between the mean
and variance updates between NAT and JAT applies to both the
HMM parameters and the environmental distortion parameters.

It was noted in [25] that if JUD is performed using VTS and
no clustering is performed, i.e., each Gaussian is its own regres-
sion class, then JUD and VTS adaptation are identical. The re-
sults reported using JUD indicate that speech recognition ac-
curacy improves as the number of regression classes increases
[19]. Thus, as the number of regression classes approaches the
number of Gaussian components, the performance of JUD will
approach, but not exceed, that of VTS. Thus, it can also be sur-
mised that if no clustering is performed in JAT, and VTS was
used by JAT in learning the parameters of the canonical model,
then JAT and NAT would converge to approximately the same
set of model parameters. However, to the best of the authors’
knowledge, the JAT experiments reported in the literature have
used fairly aggressive clustering (a small number of regression
classes compared to the number of Gaussians in the system).
Although these results demonstrate the performance and effi-
ciency of the combination of JAT and JUD, no notion of the
upper bound in performance is known. Thus, in the same way
that VTS represents an upper bound on performance for JUD,
one can consider the performance of the NAT algorithm pro-
posed in this paper as an upper bound on the performance of
a JAT approach that uses transformations based on regression
classes.

V. EXPERIMENTS AND RESULTS

To verify the effectiveness of the proposed NAT method, a se-
ries of experiments were conducted on the Aurora 2 and Aurora
3 connected digit recognition corpora using the HTK speech
recognition system [26]. The Aurora 2 consists of data degraded
with eight types of noise artificially added at signal-to-noise ra-
tios (SNRs) varying from dB to 20 dB and channel distor-
tion [27]. Three test sets provided with the task are contaminated
with noise types seen in the training data (Set A), unseen in the
training data (Set B), and additive noise plus channel distortion
(Set C). The acoustic models were trained using the standard
“complex back end” Aurora 2 recipe [28]. An HMM with 16
states per digit and 20 Gaussian mixtures per state is created
for each digit as a whole word. In addition, a three-state silence
model with 36 Gaussian mixtures per state and a one state short
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pause model which is tied to the middle stage of silence model
are used.

Aurora 2 consists of data generated by digitally adding noise
to clean speech. We also performed experiments using the Au-
rora 3 corpus in order to evaluate the algorithm’s performance
on real data actually collected in a noisy environment. Aurora
3 consists of connected digit strings recorded in realistic car
environments [29]. Each utterance is recorded using either
a close-talk or hands-free far field microphone and labeled
as coming from either a high, medium, or low noise condi-
tion. There are four languages: Finnish, Spanish, German,
and Danish and three experiment conditions: well-matched,
medium-matched, and highly-mismatched. The acoustic
models were trained using the standard “simple back end”
scripts [27]. An HMM with 16 states per digit and three
Gaussian mixtures per state is created for each digit as a whole
word. A three state silence model with six Gaussian mixtures
per state and a one state short pause model which is tied to the
middle stage of silence model are included.

For both Aurora 2 and 3, 39-dimensional MFCC features con-
sisting of 13 cepstral features plus delta and delta-delta features
are used in the experiments. The cepstral coefficient of order
zero (C0) is used instead of log energy. The cepstra are com-
puted based on the spectral magnitudes, as in the standard Au-
rora front end [27]. Also, the first and last frames of
each utterance are used to initialize noise mean and variance in
the NAT algorithm.

In the experiments, we compared performance obtained by
the proposed method (denoted as NAT in tables and figures),
and that of standard VTS model adaptation (denoted as VTS in
tables and figures). As mentioned earlier, the NAT and the VTS
perform the identical adaptation at test time and only differ in
how the HMM parameters are trained. The HMMs are trained
using the standard ML training for the VTS results, and using the
proposed NAT algorithm described in Section III for the NAT re-
sults. In Table I, the baseline results obtained with no compen-
sation are presented along with the results obtained with NAT
and VTS model adaptation methods when multi-condition data
is used for training in the Aurora 2 task. The baseline multi-con-
dition data training (MT) obtains 90.35% average word recog-
nition accuracy, whereas the VTS model adaptation improves
the results and achieves 92.30% average word recognition ac-
curacy. However, NAT further improves the performance, and
achieves 93.75% average word recognition accuracy. In addi-
tion, we present the relative improvement of NAT and VTS
model adaptation methods over the MT baseline at each SNR
level in Fig. 2. From Fig. 2 and Table I, it can be concluded that
NAT significantly outperforms both the baseline and the VTS
model adaptation for all SNR conditions when multi-condition
data is used for training in the Aurora 2 task.

We also compare the results obtained by several well-known
algorithms including cepstral mean normalization (CMN),
cepstral mean and variance normalization (CMVN), and the
ETSI advanced front-end (AFE) [30]. The AFE is a good
representation of state of the art in the feature enhancement
style of processing on these tasks. In Table II, we present word

Fig. 2. Relative improvement (%) of NAT and VTS methods over the baseline
using multi-condition training data.

TABLE I
WORD ACCURACY FOR AURORA 2 AT EACH SNR LEVEL USING

MULTI-CONDITION TRAINING DATA

TABLE II
WORD ACCURACY FOR EACH SET OF AURORA 2 USING MODELS

TRAINED ON MULTI-CONDITION DATA

accuracy results for Aurora 2 using multi-condition training
data for a set of methods for each test set. The proposed NAT
method outperforms all other methods, and provides 11.97%
relative improvement over CMN, 3.85% relative improvement
over CMVN, 7.54% relative improvement over AFE, and
18.83% relative improvement over the VTS method. The de-
tailed results obtained with NAT using multi-condition training
data for Aurora 2 are presented in Table III.

We also applied NAT to the ML trained acoustic models using
clean data to check whether the results could be improved. The
set of results obtained using clean training data is presented in
Table IV for Aurora 2. NAT provides a small improvement over
the VTS model adaptation (92.75% versus 92.94%) showing
that the clean models may not be considered completely noise-
free due to potential microphone differences and speaker differ-
ences, and the distortion model still has approximations which
we can model in NAT. Also, when the acoustic models are
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TABLE III
DETAILED WORD ACCURACY FOR AURORA 2 USING NAT MODELS TRAINED ON MULTI-CONDITION DATA

TABLE IV
WORD ACCURACY FOR EACH SET OF AURORA 2 USING

MODELS TRAINED ON CLEAN DATA

TABLE V
WORD ACCURACY FOR THE AURORA 3 EXPERIMENTAL CONDITIONS

TABLE VI
DETAILED WORD ACCURACY FOR AURORA 3 USING NAT MODELS

trained with clean data, both VTS and NAT, perform substan-
tially better than the front-end feature enhancement methods
under the noisy test conditions, and NAT achieves the highest
accuracy.

In Table V, the results obtained with Aurora 3 are presented
for the baseline, the CMN, the CMVN, and the AFE methods.
In Aurora 3, there is no clean data available for training. Hence,
the acoustic models are generated using the standard training
data provided with the database for each experimental condi-
tion. When the ML trained models are adapted at runtime using
the VTS algorithm, the average word recognition accuracy is
86.26% for the Aurora 3 task. The proposed NAT algorithm
achieves 90.66% average word recognition accuracy and out-
performs all other methods. NAT provides 39.23% relative
improvement over CMN, 12.63% relative improvement over
CMVN, 3.61% relative improvement over AFE, and 32.02%
relative improvement over the VTS model adaptation. The
detailed results obtained with NAT for Aurora 3 are presented
in Table VI.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a noise adaptive training
algorithm for noise robust automatic speech recognition. The
method estimates noise and channel distortion parameters for
each utterance and uses these parameters to normalize environ-
mental distortion as part of HMM training using a new formu-
lation of the EM algorithm. In contrast to the feature enhance-
ment methods, NAT estimates the underlying “pseudo-clean”
model parameters directly without relying on point estimates
of the clean speech features as an intermediate step. NAT uses
a vector Taylor series expansion approach to linearize the non-
linear environment distortion model in the cepstral domain. The
pseudo-clean model parameters learned with NAT are later used
with VTS model adaptation for decoding noisy utterances at test
time. Incorporating the VTS approximation used at test time in
training is aimed at reducing the mismatch between training and
test.

A set of experiments were conducted to test the proposed
noise adaptive training method. NAT has achieved 93.75% av-
erage word recognition accuracy for Aurora 2 using multi-con-
dition training data and a complex HMM backend and 90.66%
average word recognition accuracy for Aurora 3 using a simple
HMM backend. We compared the performance of NAT to the
state-of-the-art (to the best of our knowledge) model adapta-
tion (VTS) [15] and to feature-based noise adaptive training (ap-
plying AFE feature enhancement [29] to both training and test
data), and demonstrated that NAT outperforms both methods on
the Aurora 2 and 3 tasks. From these experiments, we can con-
clude that the proposed noise adaptive training method is an ef-
fective method for noise robust automatic speech recognition.

One of the strengths of the NAT method is that it can use both
clean and corrupted speech for training. This is especially ben-
eficial when there is no clean data available for training. How-
ever, if clean training data are available, we have shown experi-
mentally that training the acoustic models using NAT results in
better recognition performance than models trained in the con-
ventional manner. One explanation for this improvement is that
although clean data has little noise from the environment, there
is still significant variability due to other factors such as micro-
phone characteristics and positioning, instrumental noise condi-
tions, and speaker variations. By applying NAT to clean training
data, these additional sources of variance are normalized. An-
other reason for this improvement is that VTS adaptation makes
some approximations and incorporating those approximations
into training is beneficial. In other words, we achieve a better
match between training and test conditions.

As we discussed in Section IV, NAT has a similar objective
to two other adaptive training schemes, IVN and JAT. However,



KALINLI et al.: NOISE ADAPTIVE TRAINING FOR ROBUST ASR 1897

there are key differences among the algorithms. In IVN, only the
static components of the “pseudo-clean” HMM parameters are
updated using the VTS environmental distortion model while in
NAT, the static, delta, and delta-delta components are estimated.
Furthermore, different forms of the auxiliary function are used
in IVN and NAT, and we believe the one used in this work (and in
[15]) better accounts for the approximations used in the VTS al-
gorithm. We believe these differences explain the improvement
observed on the Aurora 2 task using NAT (93.75%) compared
to IVN (93.10%) [17].

In JAT, the HMM parameters are estimated using JUD-based
adaptation to normalize the environmental distortion. In con-
trast to NAT (and VTS), where every Gaussian component
is adapted individually, JAT (and JUD) performs adaptation
utilizing a shared set of transforms estimated from regression
classes. Using regression classes improves computational ef-
ficiency, typically at the expense of recognition accuracy. For
this reason, the combination of NAT in training and VTS at
runtime can be viewed as an upper bound on the performance
of JAT and JUD. Furthermore, JAT uses iterative gradient-based
optimization to estimate both the means and variances of the
HMMs. In NAT, an iterative approach is only required for
estimating the variances. By avoiding the use of gradient-based
methods in the mean updates, NAT allows for more efficient and
potentially more reliable estimation of the HMM parameters.

In the future, we plan to address the assumption used in our
algorithm that there is zero cross correlation between speech
and noise. In fact, other researchers have shown that this term
can in fact be nonzero and have obtained improved results by
performing VTS with a phase-sensitive model of speech cor-
ruption. We hope to similarly improve the NAT algorithm by
incorporating this phase-sensitive term into the algorithm. We
also plan to apply the NAT algorithm to a large vocabulary task.

APPENDIX A
DERIVATION OF THE UPDATE FORMULAS

FOR DISTORTION PARAMETERS1

We start with the following EM auxiliary function:

(29)
where is utterance index, represents summation over
frames, states, and Gaussians, and are the set of model and
distortion parameters we seek to optimize, and and are the
current estimate of these parameters. It is obvious that we need
to compute the posterior probability of the th Gaussian
in the th state of the HMM for frame of the th utterance. We
can compute it using (14), where are computed using
VTS model adaptation with (6) and (7), respectively.

Updating Means of Noise and Channel: We first compute
the distortion parameters for the th utterance. By ignoring the

1Similar derivations of the update equations for the VTS parameters can be
found in [25]. In [25], the noise variances are updated using a first-order gra-
dient-ascent method rather than the second-order method shown here.

constant terms with respect to , we can rewrite the expres-
sion for the auxiliary functions

(30)

where denotes summation over all frames of th utter-
ance, states and Gaussians. In other words, the distortion param-
eters are estimated on an utterance-by-utterance basis. is a
function of and as in (6), so is the function in (30).
To compute the mean formula for noise, we take the derivative
of the function in (30) with respect to and set the result
equal to zero. This produces

(31)

Then,

(32)

which can be solved for to obtain the following update for-
mula:

(33)

Similarly, to compute the mean formula for the channel, we
take the derivative of the function in (30) with respect to
and set the result equal to zero. This produces

(34)

Updating Covariance Matrix of Noise: Given the auxiliary
function in (30), there is no closed form solution for the noise
covariance matrices, so they are optimized iteratively using
Newton’s method according to the following update equation:

(35)
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We assume that the covariance matrices are
all diagonal. Then, we can write the covariance matrices as vec-
tors

(36)

(37)

(38)

where is the dimension of the feature vector; i.e., typically
dimensional cepstra are used in the traditional auto-

matic speech recognition. Then, we can rewrite the auxiliary
function in (30) explicitly as

(39)
where is the th dimension of the feature vector at time

point that belongs to the th utterance , and is the

th element of the VTS adapted mean vector for the th
utterance.

To compute the first and second derivatives of the function
with respect to the noise variance, we can expand and
matrices in (7) as:

...
...

...
...

(40)

...
...

...
...

(41)

Then, we can write the formula for the diagonal elements of the
covariance matrix given in (7) explicitly as

(42)

We can compute the first-order derivative of the function
given in (39) with respect to the noise variance by applying the
chain rule as follows:

(43)

where

(44)

and

(45)

Using (43)–(45), we can write the first derivative of the func-
tion with respect to the noise mean as

(46)
We can compute the second-order derivative of the function

given in (39) with respect to the noise variance as follows:

(47)

and it is computed as

(48)

To ensure that the variance remains positive, the logarithm of
the variance is estimated. A change of variable is made as

(49)

and at the end the exponential function is applied to compute
the actual variance; i.e.,

(50)

Hence, the derivatives are actually computed with respect to new
variable . Similar to (43), we can compute the first-order

derivative of the function with respect to new variable
as follows:

(51)

Then,

(52)

The only difference between (52) and (46) is the additional term
of (52) has, since

(53)
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Similarly, the second-order derivative of the function with
respect to new variable can be found as shown in (54) at
the bottom of the page.

APPENDIX B
DERIVATION OF THE UPDATE FORMULAS

FOR MODEL PARAMETERS

To compute the pseudo-clean model parameters of the th
Gaussian in the HMM state , we can re-write the auxiliary func-
tion given in (12) by ignoring the constant terms with respect to
the model parameters and :

(55)

The main difference between the auxiliary function for the
model parameters in (55) and the auxiliary function for the
environment distortion parameters given in (30) is that the
summation is over all frames and utterances in the training set
in (55), whereas it is over all states, Gaussians and frames of a
single utterance in (30). In other words, the pseudo-clean model
parameters of each Gaussian of the HMM states are estimated
over all utterances available in the training set.

Updating Means of Pseudo-Clean Model: is a func-
tion of as given in (6), so is the Q function in (55). To com-
pute the mean of the th Gaussian in the th state of the HMM,

, we take the derivative of the function given in (55) with
respect to , and set the result to zero. This leads to following
expression:

(56)

Then, writing explicitly in (56) produces

(57)

which can be solved for to obtain the following update
formula

(58)

Updating Covariance Matrices of Pseudo-Clean Model:
There is no closed form solution for covariance matrices of the
HMM distributions. As with the noise covariance, Newton’s
method is used to estimate them iteratively using (22). We
follow the steps detailed in Appendix A for the derivation of
the variance update equation, and to ensure that the variance
remains positive a change of variable is made such that the
logarithm of the variance is estimated, and later the exponential
function is applied to compute the actual variance. Thus, the
derivatives are actually computed to optimize the logarithm of
the HMM variance .

We use the chain rule to compute the first order derivative
of the function in (55) with respect to new variable as
follows:

(59)

where

(60)

from (42), and similar to (53),

(61)

Then, the first order derivative of the function with respect to
is found to be:

(62)

(54)
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(63)

The equation in (62) and (52) are the same except: i) the sum-
mation is over all frames and utterances in (62) whereas it is
over all states, Gaussians, and frames of a single utterance in
(52) since the auxiliary functions in (55) and (30) are different;
ii) the and terms in (52) are replaced by and
terms in (62), respectively.

Similarly, the second-order derivative of the function with
respect to new variable can be found as given in (63) at the
top of the page.
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