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Abstract
In this paper, we tackle the problem of handling narrowband
and wideband speech by building a single acoustic model (AM),
also called mixed bandwidth AM. In the proposed approach,
an auxiliary input feature is used to provide the bandwidth in-
formation to the model, and bandwidth embeddings are jointly
learned as part of acoustic model training. Experimental evalu-
ations show that using bandwidth embeddings helps the model
to handle the variability of the narrow and wideband speech,
and makes it possible to train a mixed-bandwidth AM. Further-
more, we propose to use parallel convolutional layers to handle
the mismatch between the narrow and wideband speech bet-
ter, where separate convolution layers are used for each type
of input speech signal. Our best system achieves 13% relative
improvement on narrowband speech, while not degrading on
wideband speech.
Index Terms: speech recognition, deep neural networks, band-
width embeddings, bandwidth aware training.

1. Introduction
Currently, there are many devices and equipment that receive
both narrowband and wideband speech for automatic speech
recognition (ASR) based applications. In conventional ap-
proaches, different acoustic models (AMs) are built to handle
narrow and wideband speech separately since their sampling
frequencies are different (8 kHz vs 16 kHz). However, it is not
very economical or efficient to collect large amounts of training
data for each of the tasks. A simple solution is to downsam-
ple the wideband speech and treat it similar to that of the nar-
rowband. However, wideband has information that is useful to
detect certain phonemes and is lost with downsampling [1, 2].
Moreover, models built on narrowband tends to perform worse
on the wideband speech [1, 3]. Hence, it is not a trivial task to
build mixed-bandwidth AMs.

In general, bandwidth expansion (BWE) of speech can be
used to convert narrowband to wideband speech [4–7]. BWE is
a technique used to reconstruct the high frequency components
of the narrowband using the correlation that exists between low
and high frequency of the speech signal [6]. In [5–7], deep neu-
ral network architectures such as feed forward network and a
variant of restricted Boltzman machine (RMB) have been used
to generate the higher frequency components. In [2], some is-
sues reported for BWE are: (a) BWE is quite complicated and
often introduces errors, and (b) in certain cases, the improve-
ments in the recognition are seen only for less amounts of wide-
band speech (≤ 50 hrs of transcribed data). Thus modeling
based approaches have been explored.

In [2, 3], mixed-bandwidth AM training is considered as
a missing feature problem. That is, for narrowband speech,
the spectral features represent information only from 0-4 kHz
and the remaining 4-8 kHz are missing. In [2], 22 and 27 fil-
ter bank filters were used for 8 kHz and 16 kHz data. The 22
filter bank features of 8 kHz data correspond to the 0-4 kHz of

the 16 kHz data. To make sure all the features have the same
dimension, zero padding is applied to the remaining 5 missing
dimensions of the 8 kHz data. This approach is a simple and ef-
fective method. In [3], training a Gaussian mixture model hid-
den Markov model (GMM-HMM) using a modified expectation
maximization (EM) algorithm was proposed to handle these
extended narrowband features. In recent years, deep learning
based acoustic modeling have been shown to be successful for
many state-of-the-art automatic speech recognition (ASR) sys-
tems [8–10]. Use of the extended features in combination with
powerful AMs such as deep neural networks (DNNs) has shown
to perform well on mixed-bandwidth speech [2, 11]. In [2], it
has been shown that: (a) DNNs can learn the variations in the
narrow and wideband speech, (b) a single DNN can be used
to recognize mixed-bandwith speech, and (c) improved recog-
nition performance can be achieved on wideband speech. It is
important to note that, in these techniques, different feature ex-
traction techniques are used for narrow and wideband speech.
In this paper, we show that deep neural network based AMs
are powerful and can handle such variations in the data au-
tomatically with the help of bandwidth embeddings. Another
modeling based approach was proposed in [12], where narrow-
band data was limited and thus transfer learning was used to im-
prove the performance of the system for the narrowband speech.
There, a separate model was built for each of the narrow and
wideband speech tasks. Our work focuses on building a sin-
gle model which performs well on both wide and narrowband
speech and thus different from the work described in [12].

In this paper, we focus on a modeling approach for mixed-
bandwidth speech recognition. AMs often tend to perform
poorly on unseen data such as new speaker, different noise con-
ditions, etc. To overcome these problems, techniques such as
speaker or noise aware training have been explored [13–17].
In these techniques, auxiliary information such as speaker
codes [13, 14], i-vectors [15], and bottleneck (BN) vectors
[16,17] are explicitly provided as input to the model. In [18,19],
speaker and noise embedding vectors are obtained by training
another neural network classifier. Here, we propose to use an
auxiliary input feature to the model indicating the bandwidth of
the input speech, and bandwidth embeddings are jointly learned
as part of the acoustic model training. This work is similar
to the approach described in [13, 14] where speaker represen-
tations (also referred to as speaker codes) are learned during
model training. To the best of our knowledge, there is no prior
work to use embeddings for mixed-bandwith ASR. The major
contributions of this work are as follows:

• Use of embeddings to learn representations for narrow
and wideband speech. We show that these features de-
rived from the embedding layer can be used to capture
the variations in the data and thus help us to build a
mixed-bandwidth speech AM. The embedding vectors
for narrowband and wideband speech are learned during
the model training; hence easy to use.
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Figure 1: (a) Baseline AM architecture containing two layers
of convolution layers, 3 layers of fully connected layers, a liner
bottleneck layer and then followed by an output layer, (b) Band-
width embeddings connected to the dense layers of the baseline
architecture, where c represents the type of the speech signal

• We extend the use of bandwidth embeddings to a new
model architecture which uses parallel convolutional
layers to process narrow and wideband speech sepa-
rately.

• Experimental results show that we can build a single
mixed-bandwidth model, and achieve a relative improve-
ment of 13% on upsampled narrowband speech in word
error rate (WER) over the baseline system, while not de-
grading performance on the wideband speech.

The outline of the paper is as follows: Section 2 describes
the approach to learn bandwidth embeddings. In Section 3, we
describe the use of parallel convolutional layers for processing
narrow and wideband speech separately. Section 4 describes the
database used and followed by detailed evaluations in Section 5.
Conclusions are provided in Section 6.

2. Bandwidth Embeddings and AM
Training

In this paper, we explore modeling approaches and show that
variations in the narrow and wideband speech can be learned
and handled via embeddings. Fig. 1(a) shows the architecture
of the baseline AM used in this paper. The model consists of
convolutional and dense layers. Convolutional layers are used
to reduce the spectral variations in the features and have shown
to perform well for speech recognition [20,21]. Fig. 1(b), shows
the corresponding proposed architecture of the AM which uses
an embedding layer connected to all dense layers to handle nar-
rowband and wideband speech jointly. Let weights and bias
parameters of a dense layer, l, are represented by Wl and bl

respectively. The output of the dense layer is given as:

ol = f(Wlol−1 + bl), (1)

Dense

Convolution

Convolution Bandwidth
Embeddedings

Maxpooling

Convolution

Convolution

Maxpooling

Wideband Speech Narrowband Speech

C

Figure 2: Parallel convolutional layers for narrow and wide-
band speech.

where f(·) is a non-linear activation function. Let ec be an n
dimensional embedding vector. c is a binary flag distinguishing
narrow and wideband data. That is, c = 0 represents wideband
and c = 1 represents narrowband speech. After incorporating
the embedding vector, the equation for ol is given as follows:

ol = f(Wlol−1 + Vle
c + bl)

= f(Wlol−1 + b̂l), (2)

where b̂l = Vle
c + bl. Vl is the weight matrix connecting

the embedding vector ec to the dense layer l. In this paper,
the bandwidth embeddings is connected to the first dense layer
(l = 3) after two convolutional layers. Vle

c is referred to as a
bias correction term and thus b̂l can be referred to as corrected
bias. This correction helps the model to differentiate and bet-
ter process the narrow and wideband data. ec (c ∈ {0, 1}) is
an n dimensional embedding vector and randomly initialized.
During training, they are treated as model parameters and are
updated during back-propogation. During decoding, the model
uses the embedding vector based on the type of input speech
signal and is provided by c.

3. Parallel Convolutional Layers
For speech processing, convolutional layers can be considered
as a powerful feature processing units. As mentioned earlier,
for narrowband speech, the spectral features represent informa-
tion only from 0-4 kHz and the remaining 4-8 kHz are missing.
Hence, use of convolutional layers on features without any prior
processing might not be ideal. A simple approach is to upsam-
ple the narrowband speech and use the same convolutions for all
types of input signals. From a modeling perspective, as an alter-
native to upsampling, we can use different convolutional layers
(as shown in Fig. 2) for narrow and wideband speech. Filters
from these convolutional layers do not share the parameters. We
refer to this architecture as parallel convolutional layers. Note
that we use shared parameters for the weights connecting the
convolutional layers and the dense layer. In Sections 4 and
5, we provide a detailed description of the database used and
experimental evaluations to show that embeddings and paral-
lel convolutions can be used to build a single mixed-bandwidth
AM which performs well for both the tasks.
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4. Database
To evaluate our proposed techniques, we use 3400 and 600
hours of wideband (WB) and narrowband (NB) training data.
Evaluations are performed on 54 and 4 hours of wideband and
narrowband test sets. We report word error rate (WER) to com-
pare the performance of different models. A more detailed de-
scription of the data is available in Table 1.

Table 1: Statistics of narrow and wideband training and testing
data. Note that k used in the numericals represent 1000 units

Data Sampling # Utts. HoursRate (Hz)

Training Data

WB 16k 2023k 3400
NB 8k 321k 600

Evaluation Tests

WB 16k 50k 54.2
NB 8k 3.7k 4.2

From Table 1, it can be seen that the training data for the
wideband speech is much larger than that of the narrowband. In
general, such scenarios are common as one often do not have
enough training data for each of the task, and wideband speech
is more commonly used by many devices including personal as-
sistants these days. The challenge is to exploit such mixed data
for training purposes. In Section 5, we provide evaluations and
show that the DNNs are powerful and can learn the variations
of the narrow and wideband data; thus, avoiding the need for
explicit model training for each task.

5. Evaluations
As shown in Fig. 1, we use a 7 layer deep neural network with
2 convolutional layers, 4 dense layers and followed by an out-
put layer. We use SELU (scaled exponential linear units) [22]
as activations for all the hidden layers except for the bottleneck
layer. The bottleneck layer is a dense layer with linear activa-
tions and is often used to reduce the model size [21]. We use
softmax function as the activations for the output layer. The
convolutions used in the first and the second layers consists of
128 filters with kernel sizes of 9×9 and 3×4 respectively. The
maxpooling functionality does not have any trainable parame-
ters and hence not considered as layer. The kernel size and the
strides used in maxpooling are 1×3 and 1×3 respectively. The
dense, bottleneck and the output layer consists of 1024, 512 and
approximately 8000 units. The input to the network are 40 di-
mensional log mel filter bank features with left and right context
of 10. The model is trained using cross-entropy loss function.
We use this architecture in all the evaluations performed in Sec-
tions 5.1-5.4

5.1. Baseline AMs

In this section, we present baseline experiments and their re-
sults. For training, we use a combination of wideband and
narrowband speech shown in Table 1. We built three differ-
ent AMs: (a) model AM1 built using only wideband speech
(WB), (b) AM2 built using only narrowband speech (NB), (c)
AM3 built using mixed-bandwidth speech (WB + NB), and (d)
AM4 is built using mixed bandwidth data where NB speech is
upsampled to 16 kHz. Note that during testing: (a) NB test

data is upsampled to 16 kHz when AM1 and AM4 models are
used, and (b) WB test data is downsampled to 8 kHz when AM2
model is used. We use sox for resampling the speech data [23].

Table 2: Evaluating AMs trained using a combination of nar-
row and wideband data. The word error rates (WER) reported
reflect the baseline performance of the ASR systems.

Model Training WER (%)
Data WB NB

AM1 WB 13.1 23.81

AM2 NB 22.42 21.0
AM3 WB + NB 13.6 26.2
AM4 WB + NB1 13.4 20.9 1

From Table 2, it can be seen that: (a) for WB test set, AM1
performs better than AM2 and AM3, (b) for NB test set, AM2
performs better than AM1 and AM3, and similar to the perfor-
mance of AM4. This is because, DNNs tend to perform well
in matched conditions. On the other hand, DNNs tend to per-
form well with increasing amounts of training data. However,
in this case, AM3 and AM4 do not reflect such improvement.
This is because the spectrum of narrow and wideband speech
is different and hence training a model by mixing such data is
not trivial. In Section 5.2, we show that using bandwidth em-
beddings we can exploit the use of both narrow and wideband
speech for training a single model.

5.2. Experiments with Bandwidth Embeddings

In this section, we build AMs using an embedding layer con-
nected to the first dense layer as shown in Fig. 1(b). Two sets
of embedding vectors representing the narrow and wideband
speech are learned as part of the AM training and hence sim-
ple to use.

Table 3: Baseline system performances vs AM trained with em-
beddings.

Model WER (%)
WB NB

AM1 13.1 23.81

AM2 22.42 21.0

AM3 13.6 26.2
+ Embeddings 12.9 20.2

AM4 13.4 20.91

+ Embeddings 13.0 18.21

In Table 3, we present results where AM3 and AM4 are
trained together with the proposed bandwidth embeddings. It
can be seen that bandwidth embeddings help to improve the
performance of AM3 model with relative improvement of 5%
and 23% in word error rate for WB and NB test sets. Also, AM3
+ embeddings performs similar to that of AM1 for the WB test
set, and performs better than AM2 for NB test set since it can
leverage WB data and use more data for training compared to
AM2. In Table 3, we see that AM4 + embeddings performs
better than all the other systems with a relative improvement in

1Data is upsampled to 16 kHz
2Data is downsampled to 8 kHz
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word error rate of 13% as compared to AM2 for the narrowband
speech. This is because, to build AM4 models we use the same
sampling rate for both types of speech input since narrowband
speech is upsampled. Without upsampling of the narrowband
speech (e.g. in AM3), the spectral features corresponding to 0-4
kHz do not overlap to that of the features extracted for wideband
speech. These results indicate that a single AM can be used
for mixed-bandwidth speech recognition. For an analysis, we
evaluated AM3 model training by varying the embedding vector
size from 32 to 256, and the results show that 128 was the best
performing embedding size. Hence, we use 128 dimensional
embedding vectors for evaluations in all experiments.

5.3. Experiments with Parallel Convolutional Layers

Table 4: Evaluations performed using parallel convolutions on
AM3 and AM4 models.

Model Training WER (%)
Data WB NB

AM3 WB + NB 13.6 26.2
+ Embeddings 12.9 20.2
+ Parallel Conv. 13.4 19.9
+ Embeddings & 13.0 19.6

Parallel Conv.

AM4 WB + NB1 13.4 20.9
+ Embeddings 13.0 18.2
+ Parallel Conv. 12.7 21.0
+ Embeddings & 13.2 19.9

Parallel Conv.

In Table 4, we present results using parallel convolutional
layers for AM3 and AM4 setups. It can be seen that using an
embedding layer or parallel convolutional layers is improving
the performance on either WB or NB or both the test sets. To
further improve the system, we explore the use of combining
bandwidth embeddings with parallel convolution layers. For the
AM3 setup, AM3 + embeddings & parallel convolutional layers
performs the best, and compared to AM3 baseline, it provides
4% and 25% relative improvement for WB and NB test sets, re-
spectively. Use of parallel convolutional layers for AM3 model
training has increased the model size approximately by 200k pa-
rameters, which is 1% increase in model parameter size. For the
AM4 setup, AM4 + embedding layer performs the best for the
NB test set providing 13% relative improvement over the AM4
baseline. Also, experimental results indicate that AM4 setup
does not benefit much from the parallel convolution layers for
handling the NB test set. This may be due to the fact that since
the narrowband data was upsampled to 16 kHz in AM4 train-
ing, there is no mismatch in the filter banks used for narrow-
band and wideband speech; hence there is no need to use sep-
arate convolution layers for wideband and narrowband speech
data. Whereas in AM3 training, parallel convolution layers help
more since narrowband speech is not upsampled, and hence fil-
terbanks used for the wideband and narrowband speech are dif-
ferent. In other words, the parallel convolution layers help to
reduce the mismatch between features for the AM3 setup. Note
that, upsampling of narrowband speech does not provide any
new information for the 4k-8k Hz bands. Hence, we believe
that AM4 + paralel convolutions is performing well on WB test
set by separating convolutional layers for narrowband and wide-
band speech and possibly reducing the noise that comes from

higher frequency of upsampled narrowband speech.

5.4. Result Summary

In Table 5, we summarize all the evaluations performed from
Sections 5.1 to 5.3. AM1 and AM2 are baseline systems which
are trained on wideband or narrowband speech respectively.
AM3 and AM4 models are trained in combination of bandwidth
embeddings and parallel convolutional layers. These models
primarily differ in the sampling rate of the train and test data.
That is, for AM4 models, narrowband speech was upsampled to
16 kHz, whereas raw narrowband speech was used without any
pre-processing in AM3.

Table 5: A summary of the performance of different models
where: (a) AM1 and AM2 models are the baseline systems,
(b) AM3 models are built using a combination of WB and NB
data, and (c) AM4 models are built using WB and upsampled
NB data.

Model Training WER (%)
Data WB NB

AM1 WB 13.1 23.81

AM2 NB 22.42 21.0

AM3 WB + NB 13.6 26.2
+ Embeddings & 13.0 19.6

Parallel Conv.

AM4 WB + NB1 13.4 20.9
+ Embeddings 13.0 18.2

In Table 5, it can be seen that the use of both embeddings
and parallel convolutional layers gives the best performance for
the model AM3. Compared to AM2 baseline system, we see a
relative improvement of 6% in WER for the NB test set, while
matching AM1 performance on the WB test set. In AM3, due to
the mismatch in the filter bank features, it seems helpful to have
separate convolutional layers for narrow and wideband speech.
For AM4, compared with the AM2 model, the use of bandwidth
embeddings gives a relative improvement of 13% in WER for
the NB test set, while matching AM1 performance on the WB
test set. AM4 uses upsampled narrowband speech and thus us-
ing bandwidth embeddings only seems sufficient.

6. Conclusions
In this paper, we have shown that bandwidth embeddings can
be used to build a single model for mixed-bandwidth AM. Fur-
ther more, we also used different convolutional layers (referred
to as parallel convolutional layers) to handle the mismatch be-
tween the narrow and wideband speech. Experimental results
show that models built using these approaches tend to perform
well on narrowband speech without any loss in performance on
wideband speech. For the model trained on wideband and up-
sampled narrowband speech, using bandwidth embeddings pro-
vides a relative improvement of 13% in WER on the narrow-
band test set while maintaining performance for the wideband
speech test. We also showed that using bandwidth embeddings
and parallel convolutional layers for 8 kHz and 16 kHz input
speech signal has resulted in a relative improvement of 6% in
WER on the narrowband test set without requiring upsampling
of narrowband speech.
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